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Calculations of impact stresses in 
polycrystalline graphite rods 

M. I. DARBY 
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Calculations have been made to determine the maximum stresses produced in poly- 
crystalline graphite rod specimens by a single impact of an anvil. The method of 
Timoshenko was employed, which combines the vibrational theory of Bernoulli with 
Hertz's theory of impact. The deformation parameter in the Hertz theory was obtained 
by fitting experimental results for the impact force as a function of time, and was found 
to be appreciably larger than values calculated from linear elastic theory. The model was 
unable to account for the energy losses observed experimentally. The predicted peak 
stresses corresponding to experimental conditions of single impact failure correlated well 
with the three-point bend stengths of the types of graphite considered. 

1. Introduction 
The impact properties of polycrystalline graphite 
rods have recently been studied experimentally 
by Birch and Brocklehurst [1, 2]. An anvil was 
allowed to strike the specimen repeatedly with 
constant energy until fracture occurred, and the 
resulting endurance curves were interpreted using 
a fracture mechanic approach [3]. The variation of 
the impact force on a rod as a function of time 
was also measured, and from it the maximum 
stresses at failure were estimated using a static load 
stress formula. The experimental data quoted in 
this paper arises from the studies of Birch and 
Brocklehurst [1,2]. 

To obtain an understanding of the impact 
failure mechanism, it is necessary to be able to 
make the best calculations of  the maximum 
stresses produced in a specimen by a single impact. 
The aim of the theoretical work reported here was 
to investigate how important the vibrational 
response of the specimen is in determining the 
stresses. The well known method of Timoshenko 
[4, 5] was employed, which combines the Bernoulli 
vibrational theory for a beam with Hertz theory 
for the impact force. As will be seen, its appli- 
cation to impact in graphite rods was not straight- 
forward. 

In the tests of Birch and Brocklehurst [1, 2], 
cylindrical beam specimens, typically of length 

120 mm and radius 7.5 ram, were simply supported 
horizontally by suitable holders at each end, and 
were struck half-way along their length by an 
anvil attached to a pendulum. The striking surface 
of the anvil was usually cylindrical, with its axis 
perpendicular to the beam, having a radius of 
curvature of approximately 2mm, and the area 
of contact with the specimen was very small. The 
velocity of the anvil at the point of impact was 
varied by adjusting the height of release of the 
pendulum, and was measured using a non- 
contacting displacement transducer. The effective 
mass of the anvil was estimated from measure- 
ments of the moment of inertia of the pendulum. 

2. Theory 
In calculating the stresses in a specimen subjected 
to an impulsive force, it was necessary to make 
a number of basic initial simplifying assumptions: 

1. the specimens have linear, isotropic elastic 
properties; 

2. a theory of Hertz [6, 7] for perfectly elastic 
bodies provides an adequate description of the 
deformations of the anvil and the specimen; 

3. no energy is lost to the specimen supports, 
or to other parts of the testing machinery. 

It is well known [8] that the constitutive 
relation for polycrystalline graphite is not linear 
and, moreover, a permanent set can be produced 
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by an applied stress. However, it was impracticable 
to include these effects on the response of the 
specimen, or on the deformation process. 

Further, it was not possible to account for the 
energy losses to the machinery, although such 
losses will be important in the experiments [9], 
and need to be estimated before a comparison can 
be made between theory and experiment. 

The equation for the deflection, w, of a beam 
performing transverse vibrations under the appli- 
cation of a force F(r, t) dependent on position r 
and time t is [8] 

O2w 
DV4w+ Pa 3t 2 - F( r , t )  (1) 

where D and Pa are appropriate constants. In 
impact experiments the force F is impulsive, being 
finite for a time typically of order 1 msec. If the 
thickness of the specimen is not small compared 
with the other dimensions, a number of corrections 
[5] must be added to Equation 1. A more import- 
ant omission in Equation 1 is the effect of damp- 
ing, which introduces a term in 3w/Ot. Unfortu- 
nately, solutions of the modified homogeneous 
equation become so complex [10, 11] that pro- 
gress on the impact problem is very difficult. 
Since the ends of the beam are simply supported, 
the boundary conditions on Equation 1 are that 
w = 0 and 3Zw/3x 2 = 0 at the ends, where x is the 
axial coordinate. 

For perfectly elastic bodies, Hertz [6, 7] has 
shown that the depth of the indentation in the 
specimen, a, produced by an impactor is pro- 
portional to F=/3: 

a = kF2/3(t) (2) 

where k depends on the elastic constants of the 
two bodies and the geometries of the contacting 
surfaces. Assuming that impact occurs at a point 
r = r i on the specimen, and denoting by Wo the 
displacement of the impactor's point of contact 
after time t, and by w(ri, t) the displacement of 
the face of the specimen, then by definition 

= Wo - w ( r i ,  t)  ( 3 )  

If Vo is the impact velocity of the impactor, and 
m its mass, Equations 2 and 3 can be combined 
to give the following integral equation for the 
impulsive force function: 

~ kF2/3(t)  = Vot dt F ( t ' ) d t ' - -  w(ri ,  t)  
m o 

(4) 

The force function F(t) and the specimen deflec- 
tion can be calculated, therefore, from the coupled 
Equations 1 and 4. 

For the transverse impact of an anvil at the 
centre of a beam, length L, simply supported at 
both ends, the beam can be considered to be one- 
dimensional. The normal modes of free vibration, 
Xi, are just [12]: 

X i ( x ) =  sin tiLx ) (5) 

Seeking a solution of Equation (1) in the form 

w(x, t) = ~ qi(t)Xi(x) (6) 
i=1 

the Lagrange's equation for the qi(t) is 

O2___qq + c~ _ F(t)Xi(L/2 ) 2F(t) (7) 
Ot 2 L 2 Pa L 

pa f s X i dx 

where 

c o i =  (8) 

[s 
c 2 = (9) 

kP A ] 

andA is the cross-sectional area. In the notation of 
Equation 1, D = E l  and Oa = fiA, the mass per 
unit length; p is the density and E is Young's 
modulus. 

Solving Equation 7 yields for the displacement: 

w(x, t) = ~ [ 2 
i odd patO~ 

x(f:F(t')sincoi(t-t')dt'}sin(~-)] 
(10) 

assuming that the initial displacement and velocity 
of the beam are zero. Employing Equation 10 in 
Equation 4, with x =L/2 the integral equation 
for F(t) becomes 

kFZ/a(t) = Vot ( t - -  t')F(t')dt' 
m 

2 Z t 1 f t  F(t') 
ApL i oaa[wl J0 

(11) 

This equation can only be solved numerically. 
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It is clear from Equation 11 that the Hertz 
constant, k, plays an important role in determining 
the function F(t). It contains all the information 
about the geometry and elastic properties of the 
anvil, and also depends on the geometry and 
elastic properties of  the specimen. 

Hertz [6] considered the conditions of contact 
of  two perfectly elastic bodies with ellipsoidal 
surfaces which have symmetry about a direction, 
the z-axis, perpendicular to the plane of contact. 
He showed that the area where contact is made is 
elliptical, and is displaced from the initial position 
in the z = 0 plane by a distance a given by: 

3 
= -~P(Ix +I2)Io~ (12) 

where P = contact pressure 

( i  - vi) 2 
I i - ( i =  1,2) (13) 

lrEi 

ds 
Is  (14) 

= ) o  [s(1 + s)(1 - e  2 + s)] v2 

a = major axis of compressed area 

/ 3 1,~3 

e = ellipticity of compressed area 

ds 
io (16) 

= J o  (1 + s)a/Z[s(1 --e 2 + s)] 1/2 

A' = average curvature of the bodies 
in the x z-plane before contact 

It follows from Equations 12 and 15 that a is 
proportional to p2/3 

ct = kP 2/3 (17) 

where the Hertz constant, k is given by 

k [., 1 [A (~)2(i, + i2):i2 (lS) 

It should be noted that Hertz [6] used a different 
constant, k:, given by 

k: = k -3/2 (19) 

As would be expected, it can be seen from 
Equations 13 and 18 that the smaller the values of 
the Young's moduli, the larger is the deformation 
for a given force. In employing Equation 18, the 
ellipticity, e, was obtained using tabulated results 
given by Love [7]. 
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3. Numerical calculations 
Equation 11 for the impact force contains a sum 
of time integrals involving F(t), and generally the 
integral equation can only be solved numerically. 
The methods commonly employed [4, 12] use 
finite time elements and an iteration process. The 
force is determined at times, t, given by t =]At ,  
where j is an integer and At is a small time 
increment. 

It is important in iterative methods to have 
good starting approximations. The force function 
was chosen to be of  sinusoidal form [13]: 

{ F~ (t'<<tc) (20) 

F(t) = 0 \ tc] (otherwise) 

with Fo and t c a s  parameters. An approximate 
values of tc, the time of contact, was obtained 
from Hertz's theory [7]: 

2 .9432(  5 12/5(Vot 4Is 
tc - (21) 1- j 

where 

kl = (ma +m2)/mam2 (22) 

and k 2 is given by Equation 19. For an anvil of 
mass m l = 0 . 2 k g  striking a beam of mass 
m2 =0.05kg,  with Vo = lmsec  -1, and k2 -~ 1 0  9 

Nm -3/2, Equation 21 gives te ~ 3.5 msec. 
A zero order treatment of the impact problem 

for a beam by Timoshenko and Young [5] provide 
useful estimates of the maximum impact force. 
Equating the kinetic energy lost by the impactor 
with the potential energy gained by the deformed 
beam, (48E]ml 1/2 

F0 ~ Vo\ L3 ] (23) 

For a cylindrical beam of radius r, I = 0.257rr 4, 
and taking E = 1.I x 10~~ -2, r = 7.5 • 10 -3 , 
L = 0 . 1 2 m ,  m = 0 . 5 k g ,  Equation 23 yields for 
Vo = 1.0 m sec -1 

Fo -~ 600 N 

for a typical graphite beam. 
The starting parameters Fo and t e chosen on 

this basis were usually taken to be Fo = 800(I'4) 
and t e = 2(msec). These values were not critical 
and, for example, the choices Fo=400(N) ,  
t e = l(msec) or Fo = 800(N), t c = 5(msec) were 
equally satisfactory. 

The time increment used was taken to be 
At = te/300. Decreasing At below this value did 
not improve the solution for the cases tested. The 



t o = 

yields 

total time of integration was arbitrarily chosen 
to be 2re. After each iteration, the function F(t)  
was set equal to zero at times, greater than t d say, 
when the calculated values were negative. The 
quantity, ta, was the contact time for the impact. 
In all cases tested it was found that t d < 2te, but 
had this not been so, the upper limit of 2t e would 
have had to be increased. It was found that of 
order 50 iterations where required to obtain 
solutions accurate to better than 1 : 106. The sum 
over vibrational modes in the integral Equation 11 
converges rapidly and the sum was typically 
terminated after ten terms. 

The displacements and stresses in a specimen as 
functions of  time are readily calculated, in 
principle, from a knowledge ofF( t ) .  However, the 
time integrals involved, of the form 

I( t )  =~s F(t ' )  sin co(t - -  t')dt' (24) 

& 

are often difficult to evaluate numerically, 
particularly when F(t)  shows oscillatory features, 
and it was found convenient to represent F(t)  as 
a Fourier series in the time interval 0 < t < t d, 
where t a is the duration of the pulse 

F(t )  = l~= l  F,, sin (n(Jt) (0 ~ t <. td) 

to (t > (25) 

with 
~J = 7r/t d (27) 

The coefficients F n are determined from F(t)  
employing 

Fn = 2 ( ta F(t)  sin (n(3t) d t  (28) 
t d do 

Substituting Equations 25 and 28 into Equation 
24, and defining 

t ( t< ta )  
(29) 

t d (t > td) 

~ { n [i-cos(nl3+a))to I( t )  = _1 F n si cot 
td n = 1 nfl + co 

1 -- cos (n~--  ~)to ] 
/ 

n[3--m ] 

[sin (n/3 -- cO)to 
cos 

(30) 

impact Nol impacf No2 impact No3 

time ) 
~ 2  m s e c ~  ~ , ~ 2  m s e c ~  

Figure I Typical experimental impact force curves for a 
gilsocarbon beam. 

The number of terms N required in the series 
depends on the complexity ofF( t ) ,  but in practice 
an upper limit of 10 was set for its value. 

4. Results 
Measurements of the impact force as a function of 
time were made by Birch and Brocklehurst [2] 
using a force transducer behind the anvil head. 
Typical curves obtained for F(t)  are shown in 
Fig. 1, and the physical properties in the sym- 
metry direction for some of the tested graphites 
are given in Table I. 

It was found that the shape of F(t)  varied 
slightly with the number of previous impacts 
received by a beam, the greatest difference being 
between the first and second impacts, presumably 
due to bedding down of various parts of  the exper- 
imental arrangement. The present theory is, of 
course, unable to account for such variations. 

Experiements on Gilsocarbon beams were made 
using anvils with both spherical and cylindrical 
surfaces, and it was of interest to determine 
theoretically what difference, if any, the anvil 
geometry had on the predicted force functions. 
In both cases, the radii of curvature of the anvil 
faces were approximately 2mm, and a straight- 
forward evaluation of Equation 18 gave values of 
the Hertz constants. 

T A B L E I Properties of graphite specimens considered 

Graphite Bulk Dynamic Three-point 
density Young's bend strength* 
(kg m -3) modulus* (MN m -2) 

(GN m-2) 

PGA 1699 11.5 16.4 
EY9 1660 6.4 25.8 
Gilsocarbon 1805 11 A 44.0 
POCO 1 8 6 0  12.0/14.8 96.0 

*Values parallel to the symmetry axis. 
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Figure 2 Impact force function for a gilsocarbon beam; 
(length 99 ram, radins 7.5 nun, impactor mass 0.289kg, 
impact velocity 1.31msec-l). Ab initio Hertz constant 
used in theory. 

k = 1.205 x 10-6raN -2/3 cyl. anvil (31) 

k = 1.027 x 10-6raN -2/3 sph. anvil (32) 

Using these constants in solving for F( t ) ,  it was 
found that the duration of  the impulse t a was 
approximately 0.2msec for both types of  anvil, 
which was an order of  magnitude smaller than the 
contact times measured by Birch and Brocklehurst 
[2]. The theoretical and experimental force func- 
tions for a typical beam are compared in Fig. 2. 
I f  allowance is made for energy losses on impact, 
see Section 5, the predicted magnitude of  the 
maximum force is only approximately half that 
observed, being similar to that of  the initial inertial 
peak of the experimental curve. The fact that the 
predicted duration of  the force is also similar to 
the duration o f  the initial peak is thought to be 
fortuitous. In view of  the large discrepancy 
between the theoretical and experimental func- 
tions, the value of  the Hertz constant, k was taken 
to be an adjustable parameter. 

Fig. 3 shows the variation in calculated ta with 
increasing k. It can be seen that a value o f k  some 
three or tour times larger than the values from 
Equations 31 and 32 gave a time duration in 
reasonable agreement with the experimental 
results. The larger values of  k were used in all 
subsequent calculations. The difference in t d 
obtained for the two anvil geometries was at most 
5 to 7%, and hence was neglected. 

The need to increase k to obtain a fit to exper- 
iment implies from Equation 2 

a = k F  z/3 
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Figure 3 Variation of contact time with Hertz constant 
for beams. 

that the depth of  the indentation produced by the 
anvil is greater for a given force than Hertzian 
theory would suggest. This could be explained 
in terms of  elastic behaviour if the effective 
Young's modulus of  the graphite under the con- 
ditions at impact was smaller than the low strain 
value employed in the ab initio calculation of  k. 
While this may be true qualitatively, it is difficult 
to justify theoretically the magnitude of  the 
increase in k required. It must be assumed that the 
larger k value is the best representation within the 
Hertz model of  the plastic deformation at the 
point of  impact. 

The,effect  of  increasing k on the maximum 
value of  the calculated force Fm is illustrated in 
Fig. 4, and it can be seen that Fm decreases for 
larger values of  k. This is consistent with the 
assumption that the processes are perfectly elastic, 
because the impulse then depends only on the 
impactor's mass rn and velocity Vo, and, is a 
constant for a given experiment. Hence as c d 
increases it is expected that Fm decreases. The 
experimental work [2] showed that the impact 
was far from being elastic, the coefficient of  



2000 

z 

ea 
u 

E 

2 

E 

1000 

I I i i , 

I 2 3 klke 4 S 

Figure 4 Maximum impact force as a function of  Hertz 
constant for beams. 

restitution being approximately 0.7. This suggests 

that the calculated impulse, and hence the calcu- 

lated Fm,  was too high by a factor 0.85. 

A comparison between an experimental and 

theoretical force profile is shown in Fig. 5. The 
areas under the two curves are approximately in 

the ratio 1/0.85, as expected, but it is clear that 

the theoretical F(t) cannot simply be scaled by a 
constant to give the experimental curves. The 

maximum forces are in the ratio 1/0.7. Given the 
uncertainties in the energy losses, the shape of 
the theoretical curve agrees reasonably well with 
experiment. The predicted oscillations, which are 

due to the vibrational response of the beam, are 
less damped at the later times. The higher fre- 
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Figure 5 Impact force function for a gilsocarbon beam; 
(length 99 mm, radius 7.5 ram, impactor mass 0.289kg, 
impact velocity 1.31 m sec-~). Optimum Hertz constant 
used in theory. 

quency components in the experimental results 
at earlier times may be due to vibrations of the 
anvil. 

Calculations were also made on beams of 
different graphites, and a comparison of some of 

the theoretical and observed parameters is made in 
Table II. 

The displacements and stresses in the beam as 

functions of time were calculated from a knowl- 

edge of the impulsive force. The deflection of the 
midpoint of the beam is given by Equation 10: 

A pL o~dd{l__ 
wl(t) - 

XftoF(t')sin[(~-f(t--t')]dt '} (33 )  

T A B L E I I Results for beam specimens 

Graphite PGA EY9106 Gilsocarbon POCO 

Impactor velocity, v 0 (m sec-1) 
Contact time, / theory 
td(msec) / ~ expt. 
Maximum force t theory 
Fro(N) ~ ~ expt. 
Maximum calculated stresses (MN m -s) 
Maximum / theory 
displacement (mm) /expt. 

0.5 0.7 1.1 2.2 
2.40 2.93 2.27 2.07 
2.9 2.7 2.4 2.1 

304 378 752 1628 
136 220 430 1000 
21.4 24.7 50.1 108.8 
0.22 0.46 0.53 1.06 
0.5 0.6 0.9 1.5 

Specimen support separation 
Radius of rod 
Effective mass of impactor 
Radius of anvil (spherical 

L = 99 mm 
r = 7.5 mm 

m = 0.289 kg 
~_ 2.0 mm. 
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The maximum tensile stress, m an outer fibre was 
determined from Oo = --Er(~2Wl/~X2), i.e. 

2Er 
Oo - ApLc 2 

X ~ f tF ( t ' )  sin ( t - - t ' )  dt '  (34) 
i o d d  ,dO 

The constant c is defined by  Equation 19 , r  is the 

beam radius and A =rr r  2. Since F(t) is only 
known numerically, the time integrals were evalu- 
ated using the Fourier analysis method. 

The rates of  convergence of  the two series in 

Equations 33 and 34 are markedly different. For  
the displacment the terms decrease with the eigen 
frequency co i as co~ 1, and sitisfactory results were 
obtained with fewer than 30 terms. The terms in 
the summation for the stress decrease very slowly 
with increasing co t and it is essential to include as 
many terms as possible. In practice the largest 
number o f  terms employed was 300. 

Typical calculated results for the behaviour of  

the displacement wl(L/2, t) and stress in an outer 

fibre Orn(t) are illustrated in Fig. 6. The displace- 
ment appears to follow the force function for 
t < td, whereas the stress is clearly an oscillatory 
function of  time. At times greater than the 
duration of  the impact, both the displacement 
and stress vary harmonically. 

Values of  the maximum displacement were 
calculated for beams of  four different graphites, 

and were compared with experimental values [2], 
see Table II. No allowance was made for energy 
losses in obtaining the theoretical values, so these 
are upper bounds. Even so, it is clear that they are 
smaller than the measured displacements by a 
substantial factor. This discrepancy could be due 
to experimental effects, such as indentation or 
shearing of  the specimen at the supports. 

Of particular interest were results for the calcu- 
lated maximum stresses produced in single impact 
failure. The velocities Vol of  the anvil required to 
cause failure were measured by  Birch and Brockle- 
hurst [1, 2], and are given in Table III for four 

T A B L E I I 1 Theoretical results for single impact failure of beams 

Graphite PGA EY9106 Gilso carbon POCO 

Length of rod, L (mm) 150 120 150 120 
Impactor velocity, % * (m sec -l) 0.7 1.1 1.5 3.1 
Coefficient of restitution, e * 0.6 0.8 0.8 0.7 
Contact time, td(msec)t 2.8 2.9 2.2 1.7 
Max force, Fro(N) 327 429 775 2220 
Maximum displacement (mm) 0.58 0.80 1.29 1.57 
Maximum stress, cr m (MN m -2) 25.0 29.2 53.8 141.0 
ecrm(MN m-2) 15.6 23.4 43.0 98.7 
Three-point bend strength, ab(MN m -2) 16.4 25.8 44.0 96.0 

Estamated experimental value. 
~Value if failure had not occurred. Rod radius r = 7.5 mm. Effective impactor mass rn = 0.289kg. Radius of anvil 
(cylondircal) 2.0 mm. 
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Figure 7 Variation of calculated maximum stress in beams 
for single impact failure as a function of the three-point 
bend strength. 

graphites. The corresponding theoretical maximum 
stresses in the beams are also shown, and can be 
compared with the three-point bend strengths. The 
data are plotted in Fig. 7, and it can be seen that 
the maximum stresses correlate well with the 
three-point bend strengths. If allowance is made 
for energy losses by decreasing the maximum 
stresses by an appropriate factor, e.g. 0.7, the 
calculated maximum stresses at failure are essen- 
tially equal to the bend strengths; see Table III. 

5. Discussion 
The main defect of the theory [12, 14] used here 
is that the treatment of the local deformation 
using the Hertz formula assumes elastic bodies, 
and it is also based on static loading conditions. 
The present calculations have shown that the 
Hertz theory works reasonably well for graphite, 
provided that the single constant, k, involved is 
regarded as an adjustable parameter. Modifications 
to the theory to include plastic deformation and 
permanent indentation were considered by 
Barnhart and Goldsmith [14], but at least three 
adjustable parameters were required, leading to 
considerable complexity in fitting experimental 
data without much gain in understanding the 
physical processes involved. In general, it would 
be expected t h a t  the deformation constant 
depends on impact velocity, but this has not been 
considered. 

A difficulty encountered in solving the integral 

equation for the force function F(t) was that the 
contact time depended sensitively on the defor- 
mation parameter k, and it was essential that 
experimental results for F(t) were available to 
determine k, It was found that the best value of 
k was four times larger than predicted by Hertz 
theory, and this gives some indication of the 
deviation of the local properties of graphite from 
perfectly elastic behaviour. The resulting theor- 
etical force functions for beams were in reasonably 
good agreement with experiment regarding dur- 
ation and shape. However, the predicted maximum 
force was higher than experiment, because the 
theory was unable to account for energy losses. 

It is only possible to discuss the energy losses 
in a qualitative manner. If it is assumed that the 
loss is proportional to the coefficient of restitution, 
the predicted maximum stresses at failure are 
equal to the static three-point bend strengths of 
the graphite considered, as can be seen from 
Table III. This result is the same as that obtained 
by Birch and Brocklehurst [2], using a static load 
model, and is of interest to compare the two 
approaches. In the static load case, the maximum 
stress is related to the maximum load by the 
relationship am =FmL/nr 3. This method is not 
expected to yield reliable values for Fro, and 
Birch and Brocklehurst used their experimental 
values of the force at failure to estimate am. By 
employing these values, information is included 
regarding both  the vibrational response of a rod 
and the energy loss. Since it is known from 
experiment, and the present calculations, that the 
deflection of a rod closely follows the impact 
force as a function of time. It can be envisaged 
that a static force-stress relationship may be satis- 
factory in this case. 

6. Conclusions 
The theory proposed by Hertz, with an adjustable 
deformation parameter combined with the mode 
summation method, has been used to calculate the 
impact force function, maximum displacements 
and maximum stresses in graphite beam specimens. 
It was found that the deformation parameter was 
appreciably larger than predicted by linear elastic 
theory. 

Good agreement was obtained between theor- 
etical and experimental force-time functions 
when allowance was made for the neglect of 
energy losses in the theory. 

Calculations for beams gave results for the 
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maximum displacements which were smaller than 
experimental values. The predicted peak tensile 
stresses corresponding to conditions of single 
impact failure were found to be proportional to 
the static three-point bend strengths of the 
graphites considered. 
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